Submitted to the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition Maximum Likelihood Estimation of Markovian Prior Parameters Using Markov Chain Monte Carlo

نویسندگان

  • Xavier Descombes
  • Robin Morris
  • Josiane Zerubia
  • Marc Berthod
چکیده

Recent developments in statistics now allow maximum likelihood estimators for the parameters of Markov Random Fields to be constructed. We detail the theory required, and present an algorithm which is easily implemented and practical in terms of computation time. We demonstrate this algorithm on three MRF models, the standard Potts model, an inhomogeneous variation of the Potts model and a long-range interaction model, better adapted to modelling real-world images. We estimate the parameters from a synthetic and a real image, and then resynthesise the models to demonstrate which features of the image have been captured by the model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring

In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...

متن کامل

Hyperparameter estimation for satellite image restoration using a MCMC maximum-likelihood method

The satellite image deconvolution problem is ill-posed and must be regularized. Herein, we use an edge-preserving regularization model using a ' function, involving two hyperparameters. Our goal is to estimate the optimal parameters in order to automatically reconstruct images. We propose to use the Maximum Likelihood Estimator (MLE), applied to the observed image. We need sampling from prior a...

متن کامل

A Bayesian Approach to Estimation of Speaker Normalization Parameters

In this work, a Bayesian approach to speaker normalization is proposed to compensate for the degradation in performance of a speaker independent speech recognition system. The speaker normalization method proposed herein uses the technique of vocal tract length normalization (VTLN). The VTLN parameters are estimated using a novel Bayesian approach which utilizes the Gibbs sampler, a special typ...

متن کامل

Bayesian Estimation of Reliability of the Electronic Components Using Censored Data from Weibull Distribution: Different Prior Distributions

The Weibull distribution has been widely used in survival and engineering reliability analysis. In life testing experiments is fairly common practice to terminate the experiment before all the items have failed, that means the data are censored. Thus, the main objective of this paper is to estimate the reliability function of the Weibull distribution with uncensored and censored data by using B...

متن کامل

MRF parameter estimation by MCMC method

Markov random "eld (MRF) modeling is a popular pattern analysis method and MRF parameter estimation plays an important role in MRF modeling. In this paper, a method based on Markov Chain Monte Carlo (MCMC) is proposed to estimate MRF parameters. Pseudo-likelihood is used to represent likelihood function and it gives a good estimation result. ( 2000 Pattern Recognition Society. Published by Else...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007